2020

PHYSICS — GENERAL

Paper: DSE-A-2 (Modern Physics)

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

Day 3

১*নং* প্রশ্ন ও ২*নং* প্রশ্ন এবং অন্য *যে-কোনো চারটি* প্রশ্নের উত্তর দাও।

১। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

 $2\times C$

- (ক) 40W, 600 nm তরঙ্গদৈর্ঘ্যের একটি উৎস থেকে প্রতি সেকেন্ডে কতগুলি ফোটন নির্গত হয়?
- (খ) 1000~V বিভব-প্রভেদে ত্রবিত একটি ইলেকট্রনের সাথে সংশ্লিষ্টি ডি-ব্রয় তরঙ্গদৈর্ঘ্য নির্ণয় করো। প্রদন্ত, ইলেকট্রনের ভর = $9.1\times10^{-31}~{
 m kg}$ ।
- (গ) একটি ইলেকট্রন 1 Å রৈখিক মাত্রার স্থানে সীমাবদ্ধ। এটির রৈখিক ভরবেগের অনিশ্চয়তার ন্যূনতম মান কী?
- (ঘ) দেখাও যে ψ(x) = A exp(ikx) (A = ধ্রুবক) রৈখিক ভরবেগ সংকারকের একটি আইগেন-অপেক্ষক। সংশ্লিষ্ট আইগেন-মানটি কী?
- (ঙ) নিশ্চল অবস্থা বলতে কী বোঝো? $\psi(x,t) = A \exp(-\alpha x^2 ikt)$ অপেক্ষকটি কি একটি নিশ্চল অবস্থা নির্দেশ করে? দেওয়া আছে, k একটি বাস্তব সংখ্যা।
- (চ) আপেক্ষিকতার বিশেষ তত্ত্বের স্বীকার্যগুলি বিবৃত করো।
- (ছ) তিন-স্তরের এবং চার-স্তরের লেজার সিস্টেমগুলির প্রত্যেকটির একটি করে উদাহরণ দাও।

২। *যে-কোনো তিনটি* প্রশ্নের উত্তর দাও ঃ

@×3

- (ক) আইনস্টাইনের আলোকতড়িৎ সমীকরণটি লেখো এবং কীভাবে এটি আলোকতড়িৎ ক্রিয়ার বৈশিষ্ট্যগুলি ব্যাখ্যা করে তা আলোচনা করো।
- (খ) কোয়ান্টাম বলবিদ্যায় সম্ভাবনার জন্য এক মাত্রার সম্ভতার সমীকরণটি নির্ণয় করো। নিশ্চল অবস্থার জন্য এই সমীকরণটি কীভাবে রূপান্তরিত হবে ?
- (গ) দেখাও যে রৈখিক ভরবেগ সংকারক একটি হার্মিশিয়ান সংকারক। যদি \hat{x} এবং \hat{p} যথাক্রমে অবস্থান এবং ভরবেগ সংকারক নির্দেশ করে, তাহলে দেখাও যে $\hat{x}\hat{p}+\hat{p}\hat{x}$ একটি হার্মিশিয়ান সংকারক।

(2)

- ্ঘ) $E^2 = p^2c^2 + m_0^2c^4$ সম্পর্কটি প্রতিষ্ঠা করো, যেখানে প্রতীকগুলি স্বাভাবিক অর্থ বহন করে। কোনো ফোটনের শক্তি এবং রৈখিক ভরবেগের মধ্যে সম্পর্ক কী ?
- (৬) কণাসংখ্যা উৎক্রমণ বলতে কী বোঝো? দেখাও যে লেজার ক্রিয়ার জন্য কণাসংখ্যা উৎক্রমণ একটি প্রয়োজনীয় শর্ত।
- ৩। (ক) দেখাও যে একটি মুক্ত ইলেকট্রন দ্বারা বিক্ষিপ্ত হওয়ার কারণে কোনো ফোটনের তরঙ্গদৈর্ঘ্যের পরিবর্তন

$$\Delta \lambda = \lambda_c \left(1 - \cos \theta \right)$$

যেখানে λ_c হল কম্পটন তরঙ্গদৈর্ঘ্য এবং θ হল বিক্ষেপণ কোণ। λ_c -এর সাংখ্যমান নির্ণয় করো, প্রদন্ত ইলেকট্রনের ভর = $9.1 \times 10^{-31}~{
m kg}$ ।

- (খ) সোডিয়ামের আলোকতড়িৎ কার্য-অপেক্ষক 2.7 eV। আলোকতড়িৎ নির্গমনের জন্য সূচনা-কম্পাঙ্ক এবং সূচনা তরঙ্গদৈর্ঘ্য হিসাব করো।
- (গ) ডেভিসন-গার্মার পরীক্ষার গুরুত্ব ব্যাখ্যা করো।
- 8। (ক) বস্তুতরঙ্গের দশা–বেগ এবং শুচ্ছ–বেগের মধ্যে সম্পর্কটি নির্ণয় করো। দেখাও যে, বস্তুতরঙ্গের শুচ্ছ–বেগ কণাটির বেগের সাথে সমান।
 - (খ) অনিশ্চয়তা-নীতি বোরের কক্ষপথের ধারণা প্রত্যাখ্যান করতে আমাদের বাধ্য করে।— ব্যাখ্যা করো।
 - (গ) কোয়ান্টাম বলবিদ্যায় রৈখিক উপরিপাতের নীতিটি কী?
- ৫। (ক) একটি তন্ত্র নিম্নলিখিত তরঙ্গরূপের সাহায্যে বিবৃতঃ

$$\psi(x) = A \sin \frac{n\pi x}{l}, \ 0 \le x \le l$$

$$= 0,$$
 অন্যথায়।

- (অ) স্বাভাবিক-করণ ধ্রুবক A-র মান নির্ণয় করো।
- (আ) তন্ত্রটির অবস্থান এবং রৈখিক ভরবেগের প্রত্যাশা-মানগুলি $ig(\langle x
 angle,\langle p
 angleig)$ নির্ণয় করো।
- (খ) প্রমাণ করো ঃ

$$\frac{d}{dt}\langle x\rangle = \frac{\langle p\rangle}{m}$$

যেখানে প্রতীকগুলি প্রচলিত অর্থে ব্যবহৃত।

(2+2+2)+8

৬। (ক) একটি কণা x-অক্ষ বরাবর নিম্ন শর্ত অনুযায়ী সীমাবদ্ধ ঃ

$$\psi(x) = \begin{cases} 5 - x, & \text{যখন } 0 \le x \le 1 \\ 0, & \text{অন্যথায়} \end{cases}$$

x=0.42 থেকে x=0.54 সীমায় সংস্থাটির সম্ভাবনা ও সংস্থাটির x-এর প্রত্যাশা মান নির্ণয় করো।

(খ) তরঙ্গ-গতিবিদ্যার মূল স্বীকার্যগুলি বিবৃত করো। (২+৩)+৫

৭। (ক) L_0 সঠিক দৈর্ঘ্যের একটি দণ্ড কোনো এক জড়ত্বীয় নির্দেশতন্ত্রের সাপেক্ষে v সমবেগে গতিশীল। প্রমাণ করো যে ওই জড়ত্বীয় তন্ত্রে দণ্ডটির পরিবর্তিত দৈর্ঘ্য

$$L = L_0 \sqrt{1 - v^2 / c^2}$$

যেখানে c হল শুন্যমাধ্যমে আলোর বেগ।

- (খ) 0.95c বেগে গতিশীল μ -মেসনের পরিমিত গড় জীবনকাল 6×10^{-6} সেকেন্ড। μ -মেসনের স্থির নির্দেশতন্ত্রে গড় জীবনকাল হিসাব করো। দেওয়া আছে $c=3\times 10^8~{
 m m/s}$ ।
- (গ) বিশেষ আপেক্ষিকতাবাদের আইনস্টাইনের বেগ সংযোজন উপপাদ্যটি প্রতিষ্ঠা করো।

9+9+8

- ৮। (ক) আইনস্টাইনের A এবং B গুণাঙ্কের মধ্যে সম্পর্ক নির্ণয় করো।
 - (খ) 2000 K তাপমাত্রা এবং 550 nm তরঙ্গদৈর্ঘ্যের একটি বাতির স্বতঃস্ফূর্ত নিঃসরণের হার এবং উদ্দীপিত নিঃসরণের হারের অনুপাত নির্ণয় করো। বাতিটি কি সুসঙ্গত আলো উৎপাদন করে? ব্যাখ্যা করো।
 - (গ) স্বল্প-সুস্থিত অবস্থা বলতে কী বোঝো? স্বল্প-সুস্থিত অবস্থার সাধারণ জীবনকাল কী?

8+(0+5)+(5+5)

[English Version]

The figures in the margin indicate full marks.

Answer question nos. 1, 2 and any four more questions from the rest.

1. Answer any five questions:

 2×5

- (a) How many photons does a 40 W source of light at wavelength 600 nm emit per second?
- (b) Find the de Broglie wavelength associated to an electron accelerated to a potential difference of 1000 V. Given, the mass of electron = 9.1×10^{-31} kg.
- (c) An electron is confined in a space of linear dimension 1 Å. What is the minimum uncertainty in its linear momentum?
- (d) Show that $\psi(x) = A \exp(ikx)$ (A = constant) is an eigenfunction of the linear momentum operator. What is the corresponding eigenvalue?
- (e) What do you mean by stationary state? Does the state $\psi(x, t) = A \exp(-\alpha x^2 ikt)$ represent a stationary state? Given, k is a real number.
- (f) State the postulates of special theory of relativity.
- (g) Give an example of each of a three-level and four-level laser system.

2. Answer any three questions:

 5×3

- (a) Write down Einstein's photoelectric equation and discuss how it explains the characteristics of photoelectric effects.
- (b) Derive the equation of continuity in one dimension for the probability in quantum mechanics. How will this equation reduce for a stationary state?

Please Turn Over

- (c) Show that the linear momentum operator is a Hermitian operator. If \hat{x} and \hat{p} respectively represent the position and momentum operators, show that $\hat{x}\hat{p} + \hat{p}\hat{x}$ is a Hermitian operator.
- (d) Establish the relation $E^2 = p^2c^2 + m_0^2c^4$, where the symbols have their usual significances. How are the energy and linear momentum of a photon related?
- (e) What do you mean by the term population inversion? Show that population inversion is the necessary condition for lasing action.
- 3. (a) Show that the shift in wavelength of a photon due to scattering by a free electron is given by

$$\Delta \lambda = \lambda_c \left(1 - \cos \theta \right)$$

where λ_c is the Compton wavelength and θ is the angle of scattering. Calculate the numerical value of λ_c , given the mass of electron = 9.1×10^{-31} kg.

- (b) The photoelectric work function of sodium is 2.7 eV. Find the threshold frequency and threshold wavelength for photoelectric emission.
- (c) Explain the importance of Davisson-Germer experiment.

(4+1)+3+2

- **4.** (a) Derive the relation between phase velocity and group velocity of matter waves. Show that the group velocity of matter wave is same as the velocity of the particle.
 - (b) Uncertainty principle forces us to reject the idea of Bohr's orbit.— Explain.
 - (c) What is the linear superposition principle in quantum mechanics?

(3+2)+3+2

5. (a) A system is described by the following wave function:

$$\psi(x) = A \sin \frac{n\pi x}{l}, \ 0 \le x \le l$$

= 0, otherwise.

- (i) Find the normalization constant A.
- (ii) Find the expectation values of position $(\langle x \rangle)$ and linear momentum $(\langle p \rangle)$ of the system.
- (b) Prove that

$$\frac{d}{dt}\langle x\rangle = \frac{\langle p\rangle}{m}$$

where the symbols have their usual meanings.

(2+2+2)+4

6. (a) A particle is bound to x axis with the following condition

$$\psi(x) = \begin{cases} 5 - x, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Calculate the probability density between the limit x = 0.42 to x = 0.54. Also calculate the expectation value of x.

(b) Write down the basic postulates of wave mechanics.

(2+3)+5

7. (a) A rod of proper length L_0 is moving uniformly with velocity v along its length with respect to an inertial frame of reference. Show that the length measured in that inertial frame is

$$L = L_0 \sqrt{1 - v^2 / c^2}$$

where c is the speed of light in vacuum.

- (b) The average lifetime of μ -mesons with a speed of 0.95c is measured to be 6×10^{-6} sec. Calculate the average lifetime of μ -mesons in its rest frame. Given $c = 3 \times 10^8$ m/s.
- (c) Derive Einstein's velocity addition theorem in special theory of relativity.

3+3+4

- **8.** (a) Derive the relation between Einstein's A and B coefficients.
 - (b) Find the ratio of the rate of spontaneous emission to the rate of stimulated emission by a bulb at temperature 2000 K at wavelength 550 nm. Does the bulb produce coherent light? Explain.
 - (c) What do you mean by metastable state? What is the typical lifetime of metastable states?

4+(3+1)+(1+1)