(T(5th Sm.)-Mathematics-H/DSE-A-1/CBCS)

2020

MATHEMATICS — HONOURS

Paper : DSE-A-2

(Advanced Algebra)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Notations Have Usual Meanings]

Group - A

(Marks : 20)

- 1. Answer *all* questions. In each question *one* mark is reserved for selecting the correct option and *one* mark is reserved for justification. (1+1)×10
 - (a) The number of Sylow 2-subgroups of A_4 is
 - (i) 4 (ii) 1 (iii) 3 (iv) 2.
 - (b) Let G be a group of order 15. Then the centre of G is isomorphic to

(i)
$$(\mathbb{Z}_3, +)$$
 (ii) $(\mathbb{Z}_5, +)$ (iii) $(\mathbb{Z}_7, +)$ (iv) $(\mathbb{Z}_{15}, +)$.

- (c) Which of the following is a simple group?
 - (i) $(\mathbb{Z}, +)$ (ii) $(\mathbb{Q}, +)$ (iii) $(\mathbb{Z}_{16}, +)$ (iv) $(\mathbb{Z}_{37}, +)$.
- (d) Let G be a finite group. Which of the following statements is true?
 - (i) G is isomorphic to a cyclic subgroup of S_n for some positive integer n.
 - (ii) G is isomorphic to a subgroup of A_n for some positive integer n.
 - (iii) $G = S_n$ for some positive intger *n*.
 - (iv) G is isomorphic to \mathbb{Z}_n for some positive integer n.
- (e) Which one of the following statements is false?
 - (i) $x^2 2$ is irreducible in $\mathbb{Z}[x]$
 - (ii) 3x + 6 is irreducible in both $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$
 - (iii) $x^2 2$ is irreducible in $\mathbb{Q}[x]$ but not so in $\mathbb{R}[x]$
 - (iv) $\mathbb{Z}_2[x]$ is not an infinite field.

(T(5th Sm.)-Mathematics-H/DSE-A-1/CBCS)

- (f) Which one of the following rings is not a regular ring?
 (i) (ℝ, +, ·) (ii) (ℚ, +, ·) (iii) (ℤ, +, ·) (iv) (ℤ₆, +, ·).
- (g) Identify the correct statement.
 - (i) $\mathbb{Z}\left[\sqrt{5}\right]$ is a principal ideal domain.
 - (ii) $\mathbb{Z}\left[\sqrt{5}\right]$ is a Euclidean domain.
 - (iii) $\mathbb{Z}\left[\sqrt{2}\right]$ is a Euclidean domain.
 - (iv) $\mathbb{Z}\left\lceil \sqrt{2} \right\rceil$ is not a Euclidean domain.
- (h) Let R be a commutative ring with unity. Find which one of the following statements is true.

(2)

- (i) Every ideal of R is a prime ideal.
- (ii) Every ideal of R is a principal ideal.
- (iii) Every ideal of R is a maximal ideal.
- (iv) Every maximal ideal of R is a prime ideal.
- (i) The member of solutions of the polynomial equation $x^2 + x = 0$ in \mathbb{Z}_6 is
 - (i) 2 (ii) 4 (iii) 6 (iv) none of these.
- (j) All the associates of [6] in \mathbb{Z}_{10} are
 - (i) [2], [4], [7], [9]
 - (ii) [3], [5], [7], [8]
 - (iii) [2], [4], [6], [8]
 - (iv) [2], [4], [6], [9].

Group - B

(Marks : 15)

- 2. Answer any three questions :
 - (a) (i) Consider the alternating group A_3 on the set $S = \{1, 2, 3\}$. Prove that there exists a group action of A_3 on S.
 - (ii) Prove that every group of order p^2 where p is a prime, is commutative. 3+2
 - (b) (i) If G is a group of order pⁿ where p is a prime and n is a positive integer, then show that the centre Z(G) ≠ {e} where 'e' is the identity element of G.
 - (ii) Prove or disprove : There are 6 elements of order 7 in a group of order 28. 3+2

1 + 4

(c) State and prove Sylow's First Theorem.

(3)

- (d) (i) Prove that 6 = 1 + 2 + 3 is a class equation of a finite group.
 - (ii) Prove that for any group G, $\left|\frac{G}{Z(G)}\right| \neq 51$. 3+2
- (e) Show that A_5 is a simple group.

Group - C (Marks : 30)

- 3. Answer any six questions :
 - (a) (i) Using Eisenstein's criterion, prove that the polynomial 10x³ 7x + 14 is irreducible over Q.
 (ii) Show that Z[x] is not a principal ideal domain. 3+2
 - (b) Define greatest common divisor (gcd) of a pair of elements of a ring. Give an example of a ring R and a pair of elements $a, b \in R$ such that gcd(a, b) does not exist. 2+3
 - (c) (i) Find gcd(2-7i, 2+11i) in the ring of Gaussian integers $\mathbb{Z}[i]$.
 - (ii) In an integral domain *R*, prove that two elements *a* and *b* of *R* are associate with each other if and only if $\langle a \rangle = \langle b \rangle$. 3+2
 - (d) (i) Let $\omega = \frac{-1 + \sqrt{-3}}{2}$ and $\mathbb{Z}[\omega] = \{r + s\omega \mid r, s \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain.
 - (ii) Let *R* be a Euclidean domain with Euclidean valuation δ and $u \in R$. If $\delta(u) = \delta(1)$, prove that u is a unit in *R*. 3+2
 - (e) (i) In $(\mathbb{Z}_{12}, +, \cdot)$, prove that the element [3] is prime but not irreducible.
 - (ii) In the ring of Gaussian integers $\mathbb{Z}[i]$, show that the element 5 is not irreducible. 3+2
 - (f) (i) Prove that isomorphic integral domains have isomorphic quotient fields.
 - (ii) Find all irreducible polynomials of degree 2 over the field \mathbb{Z}_3 . 3+2
 - (g) (i) Prove that a factorization domain D is a unique factorization domain if and only if every irreducible element of D is prime.
 - (ii) Prove that the elements [4]x + [1] and [2]x + 3 are units in the ring $\mathbb{Z}_{8}[x]$. 3+2
 - (h) Show that every integral domain can be embedded in a field. 5
 - (i) Prove that the centre of a regular ring is again regular. 5
 - (j) Determine all the prime elements of the ring $\mathbb{Z}[i]$.

5

5