2018

MATHEMATICS - HONOURS

First Paper

(Module - I)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Marks: 35)

Answer any seven questions.

		•
1.	(a)	Prove that if the equation $qx + ry = s$ has integral solution then $gcd(q, r)$ divides s, where q, r, s are integers such that q and r are not both zero.
	(b)	If $a \equiv b \pmod{m}$ then show that $a^n \equiv b^n \pmod{m}$ for all positive integers n . Prove by an example that the converse of the above theorem is not true.
2.	(a)	State Fermat's theorem. Using this theorem prove that $n^{12} - 1$ is divisible by 7 if $gcd(n, 7) = 1$.
	(b)	Find the least positive residue in 2^{37} (mod 19).
3.	(a)	Prove that $\phi(n)$ is an even integer if $n > 2$. (ϕ is the Euler's Phi function).
	(b)	What is the remainder when $6 \times 7^{32} + 7 \times 9^{45}$ is divided by 4?
4.	Sho	w that $n^n > 1 \cdot 3 \cdot 5 \dots (2n-1)$ when $n > 1$.
5.	(a)	If α and β be the roots of the equation $x^2 - 2x \cos\theta + 1 = 0$, then find the equation whose roots are α^n and β^n .
	(b)	Find the general values of Log (-1) and hence find the value of Log (-1).
6.	(a)	If $a \neq 0$, z_1 , z_2 be complex, examine the validity of the relation $a^{z_1} \cdot a^{z_2} = a^{z_1 + z_2}$.
	(b)	Show that the sum of the 99th powers of the roots of the equation $x^5 = 1$ is zero.

K(I)-Mathematics-H-1 (Module-I)

(2)

7. (a) If $u + iv = \cot(x + iy)$, prove that

$$u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

and
$$v = -\frac{\sinh 2y}{\cosh 2y - \cos 2x}$$
.

(b) Find $\cos^{-1} i$.

- **8.** (a) If a, b, c be all positive real numbers prove that $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$.
 - (b) Find the maximum value of $(7-x)^4 (2+x)^5$ when x lies between (-2) and 7.
- 9. If $a_1, a_2, ..., a_n$ be *n* positive real numbers and $p_1, p_2, ..., p_n$ be *n* positive rational numbers, then prove that $\frac{p_1 a_1 + p_2 a_2 + ... + p_n a_n}{p_1 + p_2 + ... + p_n} \ge \left(a_1^{p_1} \cdot a_2^{p_2} \cdot ... \cdot a_n^{p_n}\right)^{1/(p_1 + p_2 + ... + p_n)}.$
- 10. Solve the equation $x^5 1 = 0$ and deduce the value of $\cos \frac{\pi}{5}$ and $\cos \frac{2\pi}{5}$.
- 11. If $\alpha_1, \alpha_2, \alpha_3,, \alpha_n$ be the roots of $x^n + p_1 x^{n-1} + p_2 x^{n-2} + + p_{n-1} x + p_n = 0$ then find the values of $(\alpha_1^2 + 1)(\alpha_2^2 + 1).....(\alpha_n^2 + 1)$.
- 12. (a) If $x^4 + ax^2 + bx + c$ has a factor of the form $(x \alpha)^2$ show that $8a^3 + 27b^2 = 0$.
 - (b) Using Sturm's theorem find the number of real roots of the equation $x^4 + 8x^2 9 = 0$.
- 13. (a) Prove that if f(x) be a polynomial of degree n and $f(x) = x^n f\left(\frac{1}{x}\right)$ then f(x) = 0 is a reciprocal equation of the first type.
 - (b) Solve the equation $x^4 4x^3 + 6x^2 + 4x 7 = 0$ by Ferrari's method.

3

2

Group - B

(Marks: 15)

Answer any three questions.

- 14. (a) If A, B, Z be three non-empty sets such that $Z \cap A = Z \cap B$ and $Z \cup A = Z \cup B$ then prove that A = B.
 - (b) Prove that the inverse of an equivalence relation is an equivalence relation.

- 15. (a) If $f: S \to S$ be surjective where S is a finite set, then show that f is injective.
 - (b) Let $A = R \left\{-\frac{1}{2}\right\}$, $B = R \left\{\frac{1}{2}\right\}$. Let $f: A \to B$ be defined by $f(x) = \frac{x-3}{2x+1}$, $\forall x \in A$. Does f^{-1} exist? Justify your answer.
- **16.** (a) Let G be a finite group and $a, b \in G$. If $b = ga g^{-1}$ for some $g \in G$, then prove that o(a) = o(b).
 - (b) If G be a finite group with identity element e, then prove that there exists a positive integer m such that $a^m = e \forall a \in G$.
- 17. Let H and K be two subgroups of a group (G, o). Then prove that HUK is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
- **18.** Let (G, \circ) be a group. Prove that a non-empty subset H of G forms a subgroup of (G, \circ) if and only if $a \in H, b \in H \Rightarrow a \circ b^{-1} \in H$.