2021

CHEMISTRY — HONOURS

Paper: CC-10

[Inorganic Chemistry]

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight from the rest.

1. Answer any ten questions:

1×10

- (a) Name a ligand which could effectively be used in chemical separation of *cis* and *trans* isomers of [CrCl₂(NH₃)₄]Cl.
- (b) TiCl₃ is easily oxidised in air.— Why?
- (c) Name one eluting agent that could be used in separation of lanthanides in ion exchange method.
- (d) What will be the ground state term for $[Ni(H_2O)_6]^{2+}$?
- (e) Give one use of a lanthanide element or its compound.
- (f) Arrange the following ligands in order of their increasing trans-effect: CO, NH₃, Cl⁻
- (g) Give an example of high spin cobalt (III) octahedral complex.
- (h) $[Mn(H_2O)_6]^{2+}$ and $[MnCl_4]^{2-}$ have $\mu_{eff}\!\approx\!\mu_s.$ Why?
- (i) Predict the sources of colour in $[Cr(H_2O)_6]^{3+}$ and $CrO_4^{\ 2-}$.
- (i) Write the ground state electronic configuration of Ce (At. No. -58).
- (k) Identify the complex with higher CFSE : $\left[\text{Cr}(\text{H}_2\text{O})_6 \right]^{2+}$ or $\left[\text{Mn}(\text{H}_2\text{O})_6 \right]^{2+}$
- (l) Cite an example of dynamic Jahn-Teller distortion.
- 2. (a) Both $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$ are diamagnetic but they have different geometries. Explain.
 - (b) Define lability and inertness with specific examples.

3+2

3+2

- **3.** (a) Cu, Ag and Au are present in the same group but their most common oxidation states are different. Comment on their most common oxidation states and justify your answer with reason.
 - (b) For $[\text{Co X}_6]^{3-}$, where X is a monodentate, uninegative ligand, $\Delta_0 = 15000 \text{ cm}^{-1}$ and $P = 18000 \text{ cm}^{-1}$, calculate CFSE for the complex.

- **4.** (a) K₂CuF₄ forms crystal with two shortened bonds in an octahedron.— Explain.
 - (b) HgCl₂ is white but HgI₂ is red.— Justify.

3+2

- 5. (a) Calculate octahedral crystal field splitting energy in kJ/mol for $[Fe(CN)_6]^4$, if the wavelength of the most intensely absorbed light is 305 nm.
 - (b) Using trans effect phenomenon, how would you chemically separate *cis* and *trans* isomers of diammine dichloro platinum (II)?

 3+2
- 6. (a) Chloride substitution by water molecule in *trans*-Co(AA)₂Cl₂ complexes were studied (AA = ethylene diammine) and it was found that the rate is 3.2×10^5 sec⁻¹. However, the rate gradually increases as we substitute one by one hydrogen of the ethylenic carbon atom of the ligand AA by a methyl group, and the rate becomes very high when AA is NH₂ C(CH₃)₂ C(CH₃)₂NH₂. Predict the mechanistic path with proper justification.
 - (b) It is easy to separate V from Nb in a mixture but difficult to separate Nb from Ta. Explain. 3+2
- 7. (a) In earlier actinides, electronic spectra show some resemblance with transition metals though the heavier actinides behave more lanthanide—like in this respect. Justify.
 - (b) Suggest the efficient routes to synthesize both *cis* and *trans* isomers of [PtCl₂(NH₃)(PPh₃)] starting from PtCl₄²⁻.
- 8. (a) Comment on colour and discuss on magnetic properties of the following compounds:

(i)
$$[FeF_6]^{3-}$$
 (ii) $[Fe(CN)_6]^{3-}$

(b) $[NiCl_4]^{2-}$ is tetrahedral but $[PtCl_4]^{2-}$ is square planar.— Explain.

3+2

- 9. (a) What is tetragonal distortion? Which d^n configurations would lead to weak and strong Jahn-Teller distortion in octahedral complexes?
 - (b) MnO_4^- and CrO_4^{2-} are d^o systems. Which one will have higher λ value in the absorption spectra? 3+2
- **10.** (a) How many electronic transitions are possible for an octahedral Ni(II) complex? Explain with Orgel diagram.
 - (b) What is the main difference in spectral output of 3d transition metal complexes and lanthanide complexes?
- 11. (a) Justify the following order of spectrochemical series:

$$CO > H_2O > F^-$$

(b) Au^{2+} is unstable towards disproportionation.— Explain.

3+2

- 12. (a) For isoelectronic series:
 - V(CO)₆⁻, Cr(CO)₆, Mn(CO)₆⁺, predict and explain the change in MLCT band energies.
 - (b) Predict the type of spinel structure for $\mathrm{Fe_3O_4}$ and $\mathrm{Co_3O_4}$.

3+2

- 13. (a) Which d^n ion octahedral complexes show orbital contribution towards overall magnetic moment value?
 - (b) Cu(II) acetate monohydrate shows lower $\mu_{\mbox{\tiny S}}$ value than expected.— Justify.

3+2