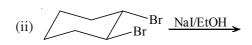
2021

CHEMISTRY — HONOURS Sixth Paper (Group-A)

Full Marks: 75


The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

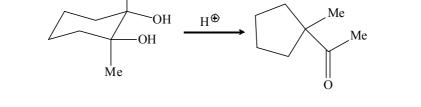
CHT – 32a

Unit – I

Answer any three questions.

1.	(a)	On treatment with aqueous NaNO2 and dilute HCl, trans-2-aminocyclohexanol produces cyclopentar	ıe
		carboxaldehyde while the cis-isomer gives mixture of products. Explain.	3
	(b)	Trans- 4-t-butylcyclohexyl tosylate does not undergo base catalysed E-2 elimination reaction but the	ıe
		corresponding <i>cis</i> -isomer undergoes. Explain the observation with mechanism.	2
2.	(a)	Draw all the possible conformations of <i>cis</i> - and <i>trans</i> - 1,3-dimethylcyclohexanes. Comment on the	
		relative stability based on steric interaction.	3
	(b)	Explain the observation that trans- 2-chlorocyclohexanol gives epoxycyclohexane under basic condition	15
		whereas the cis-isomer gives cyclohexanone under the same condition.	2
3.	(a)	Predict the product(s) with proper mechanism:	3
		Br	
		(i) <u>Nal/EtOH</u>	

(b) Draw the preferred conformation of 1-methyl-1-phenylcyclohexane and justify your answer. 2


Please Turn Over

4. (a) Trace the pathway for the formation of the following molecule (\underline{A}) from methyl vinyl ketone and Me₂CHCHO. 3

CH3

(<u>A</u>)

- 5. (a) PhCHO and $CH_3COCH_2CH_3$ give PhCH = $CHCOCH_2CH_3$ in base and PhCH = $C(CH_3)COCH_3$ in acid. Give mechanistic explanation. 3
 - (b) Identify $(\underline{\mathbf{B}})$, $(\underline{\mathbf{C}})$, $(\underline{\mathbf{D}})$ and $(\underline{\mathbf{E}})$.

$$(\underline{\mathbf{E}}) \xrightarrow{(\mathbf{C})^{2} \text{Et}} (\underline{\mathbf{C}}) \xrightarrow{(\mathbf{C})^{2} \text{Et}} (\underline{\mathbf$$

Unit – II

Answer any two questions.

- 6. (a) How can you distinguish between the members of each of the following pairs by IR spectroscopy?
 - (i) Methyl benzoate and phenyle acetate
 - (ii) Ethanol and ethylene glycol.

H₃C

Me

(2)

2

2

3

2

2

3

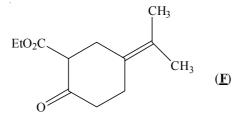
(3)

- 7. (a) Mesityl oxide shows λ_{max} 230 nm ($\epsilon = 12,600$) and 329 nm ($\epsilon = 41$) in hexane and λ_{max} 243 nm ($\epsilon = 10,000$) and 305 nm ($\epsilon = 60$) in water. Explain.
 - (b) Define the following terms:
 - (i) Chromophore
 - (ii) Hypsochromic effect.
- 8. (a) An organic compound of molecular formula, $C_6H_{12}O$ shows the following spectral pattern:

IR : 1715 cm^{-1} and 2900 cm^{-1}

 $1_{\rm H}$ NMR : δ 1·0 (9H, s) and δ 2·0 (3H, s)

Identify the compound explaining the above spectral data.


(b) Find the δ value of a signal if the observed shift of that signal from TMS is 162 Hz in a 60 MHz NMR machine. 2

CHT – 32b

Unit – I

Answer *any three* questions.

9. (a) Show the retrosynthetic analysis of the following compound (\underline{F}) and carry out the synthesis. 3

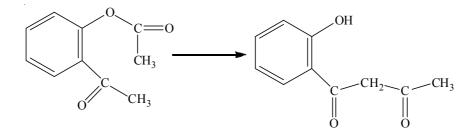
(b) Write the synthetic equivalents corresponding to the following synthons:

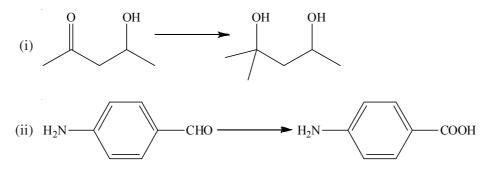
2

(i) $\begin{array}{c} \Theta \\ CH_2NH_2 \\ \Theta \end{array}$

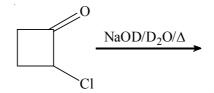
Please Turn Over

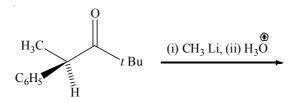
10. (a) Employing disconnection approach, design a suitable synthesis for the following target molecules:


(4)

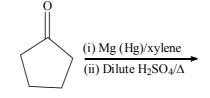

2

2


(b) How can you carry out the following conversion?


11. (a) Carry out the following conversions using suitable protection and deprotection techniques. 3

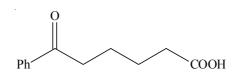
(b) Predict the product(s) with plausible mechanism.



12. (a) Use Felkin-Anh model to explain the formation of major product in the following reaction: 3

(5)

(b) Complete the following reaction with plausible mechanism.



13. (a)
$$CH_3 \longrightarrow C \longrightarrow CH_3 \xrightarrow{1. \text{HCHO}, \text{Et}_2\text{NH. HCl, MeOH/ reflux}}_{2. \text{OH}} (\underline{G}) \xrightarrow{CH_3I} (\underline{H})$$

$$(\underline{K}) \xleftarrow{1. \text{Dil ethanolic KOH}}_{2. \text{H}_3\text{O}^{\textcircled{\textcircled{}}}, 3. \Delta} (\underline{J}) \xleftarrow{H_2\text{C}(\text{CO}_2\text{Et})_2/}_{\text{NaOEt/EtOH}} (\underline{I}) \xleftarrow{0}_{2. \text{Distilled}} (\underline{J}) \xleftarrow{0}_{2. \text{$$

Identify $(\underline{\mathbf{G}})$, $(\underline{\mathbf{H}})$, $(\underline{\mathbf{I}})$, $(\underline{\mathbf{J}})$, $(\underline{\mathbf{K}})$, $(\underline{\mathbf{L}})$

(b) Show the retrosynthetic analysis of the following compound and carry out the synthesis. 2

Unit – II

Answer any two questions.

- 14. (a) Discuss the mechanism of osazone formation reaction in aldohexoses. Why osazone formation does not proceed beyond first two carbon atoms?3
 - (b) Convert D-arabinose to D-mannose.
- (a) NaBH₄ reduces the aldose (<u>M</u>) to an optically inactive alditol. Ruff degradation of (<u>M</u>) yields (<u>N</u>), the alditol of which is also optically inactive. Ruff degradation of (<u>N</u>) yields L-glyceraldehyde. Identify the aldoses (<u>M</u>) and (<u>N</u>).
 - (b) Draw the cyclic structure of sucrose.
- 16. (a) Mutarotation of glucose is catalysed by phenol-pyridine mixture and more effectively by 2-hydroxypyridine. Explain with mechanism.3
 - (b) α -Anomer of D-glucose is more stable in non-polar medium although it is conformationally less stable than the β -isomer. Explain. 2

Please Turn Over

2

3

2

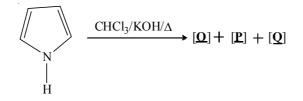
2

(6)

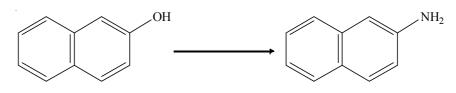
CHT – 32c

Unit – I

Answer any three questions.


.

c


17.	(a)	How is naphthalene synthesised using Friedel-Crafts reaction?	3
	(b)	Phenanthrene reacts with dichlorocarbene in its C-9/C-10 positions but anthracene does not. Explain	in.
			2
18.	(a)	Furan reacts differently with nitronium fluoroborate and acetyl nitrate in pyridine to give 2-nitrofura	ın.
		Explain.	3
	(b)	Write down the product of the following reaction with plausible mechanism.	2
		NaNH ₂ /liq.NH ₃	

19.	(a)	What happens when phenylhydrazone of ethyl methyl ketone is subjected to Fischer indole synthesis	
		Give mechanism.	3
	(b)	Synthesise 1-methylisoquinoline by Bischler-Napieralski reaction.	2

- 20. (a) Which one of the following is the least aromatic one? Justify your answer showing a suitable reaction. Furan and pyrrole.
 - (b) Identify the product(s) and explain their formation.

- 21. (a) 2-, 4-, 6- positions of pyridine-1-oxide are reactive towards electrophilic as well as nucleophilic reagents. Justify your answer with examples.
 3
 - (b) Carry out the following transformation with plausible mechanism.

2

2

(7)

Unit – II

Answer any two questions.

22.	(a)	Define isoelectric point of amino acids. How can you separate a mixture of alanine and lysine the basis of their isoelectric point?	on 3
	(b)	Write down the pathway to synthesise the dipeptide val-gly using direct method involving DCC.	2
23.	(a)	How is N-terminal amino acid determined by Edman's method? Why is this method more advantaged than Sanger's method?	ous 3
	(b)	Convert glycine to phenylalanine using Erlenmeyer's azlactone synthesis.	2
24.	(a)	Write down the structures of A-T and G-C base pairings in DNA.	3
	(b)	What are nucleosides and nucleotides?	2